

AST-Trans: Code Summarization with Efficient Tree-Structured Attention

Ze Tang¹, Xiaoyu Shen², Chuanyi Li¹, Jidong Ge¹, Liguo Huang³, Zhelin Zhu¹, Bin Luo¹ ¹State Key Laboratory for Novel Software Technology, Nanjing University ²Alexa Al, Amazon

³Department of Computer Science, Southern Methodist University Dallas

2. Background

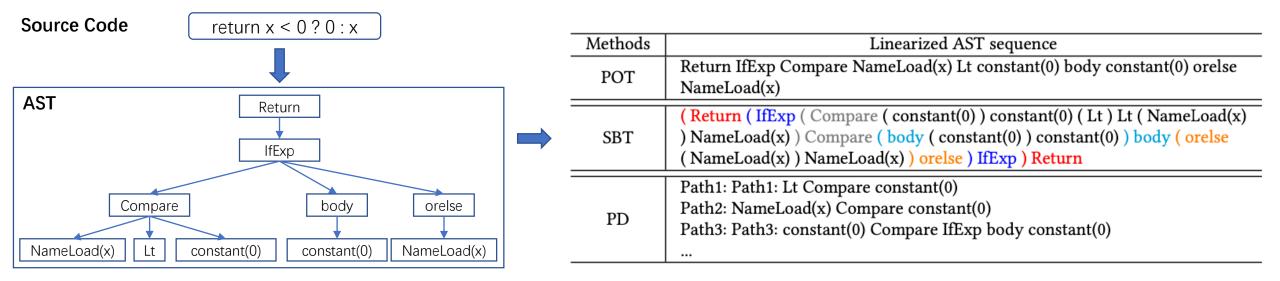
Code Summarization/Code Comment Generation

Input	Method	Model		
Code	split code into tokens	RNN ^[1] , Transformer ^[2]		
Abstract Syntax Tree(AST)	use tree-based model or GNN	Tree-LSTM ^[3]		
Linearized AST	 convert AST to sequence Pre-order Traversal(POT) Structure-based Traversal(SBT) Path Decomposition(PD) 	LSTM ^[4] , Code2Seq ^[5]		

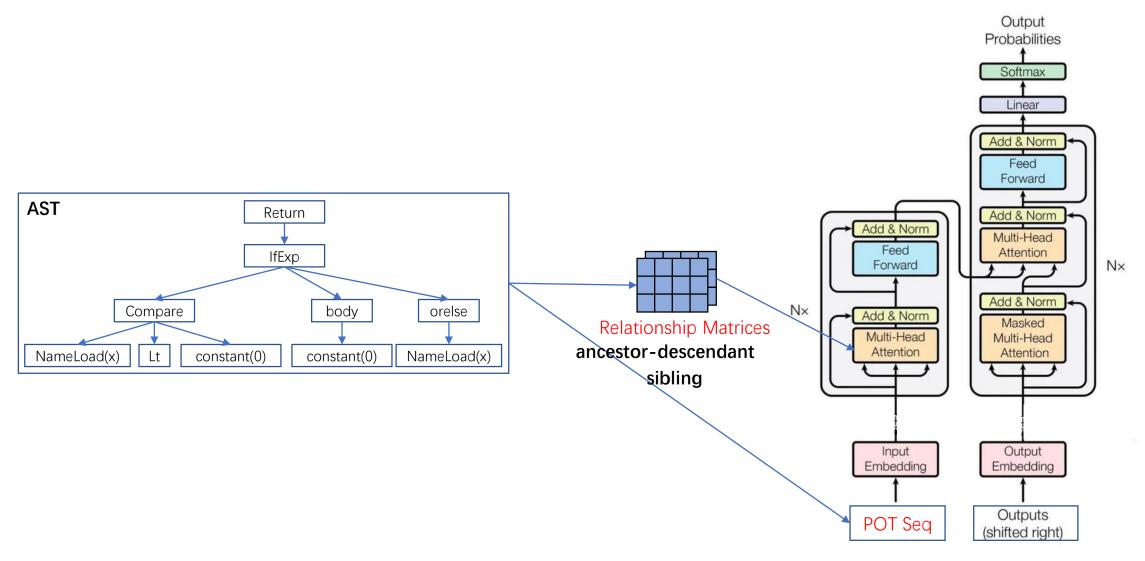
3. Motivation

The length of **linearized AST** is much longer than **source code**

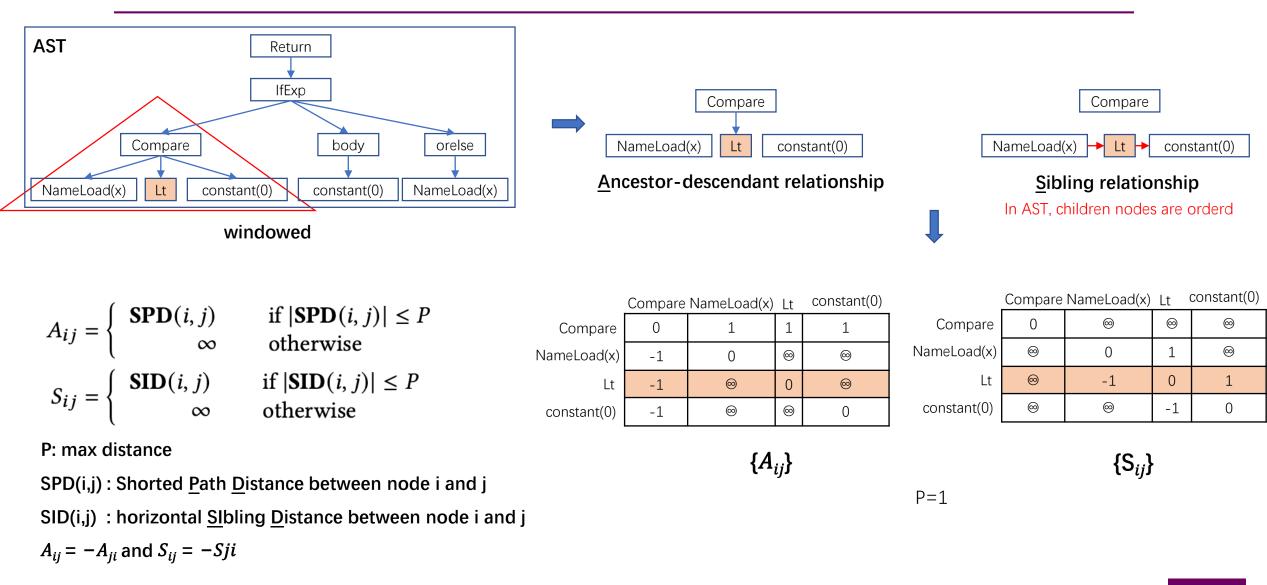
- Hard to learn : encoding SBT underperforms encoding source code when using Transformer^[2]
- Significant computational overhead : quadratically with the sequence length in Transformer



4. AST-Trans — Overall Architecture



4. AST-Trans—— Relationship Matrices



4. AST-Trans—— Tree-Structured Attention

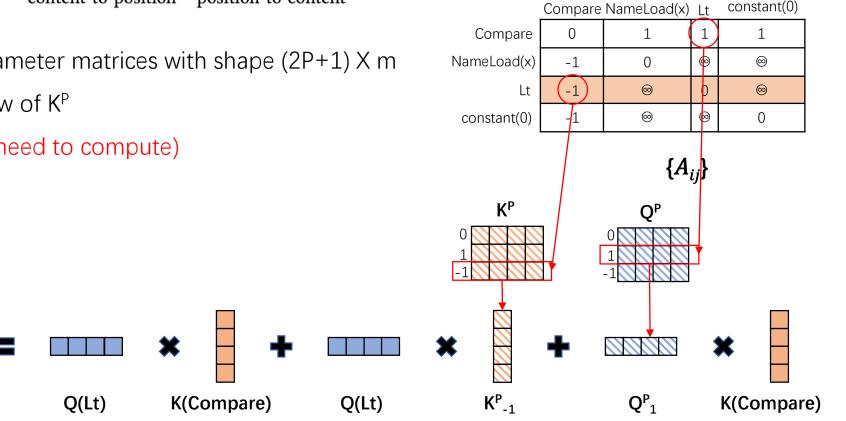
Disentangled Attention^[6]

 $\tilde{\alpha}_{i,j} = Q(x_i)K(x_j)^{\mathsf{T}} + Q(x_i)K_{\delta(i,j)}^{P} + Q_{\delta(j,i)}^{P}K(x_j)^{\mathsf{T}}$ content-to-content content-to-position position-to-content

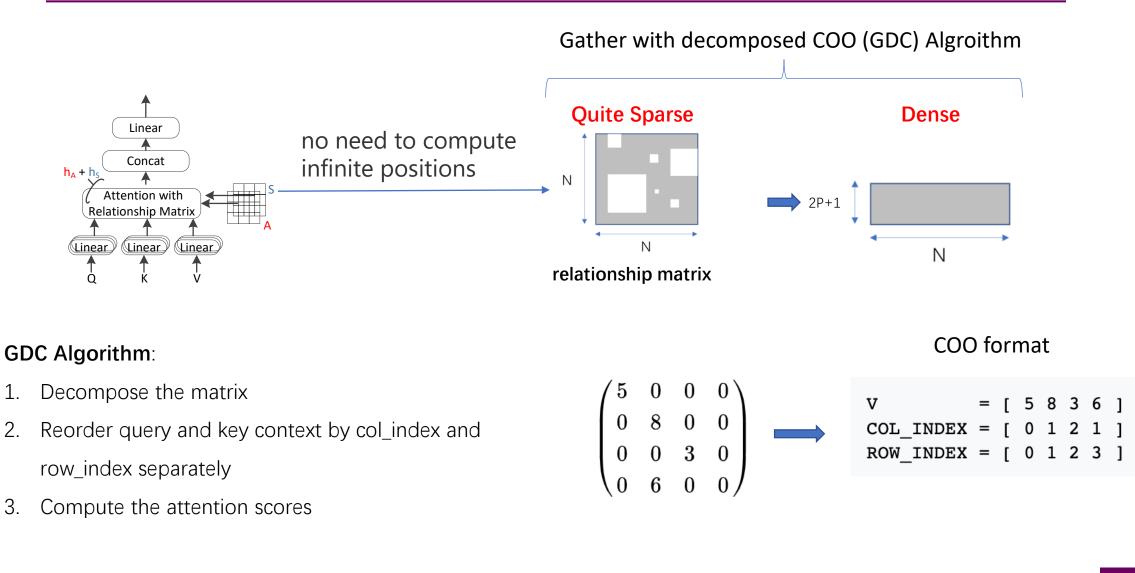
- K^{P} and Q^{P} are hype parameter matrices with shape (2P+1) X m
- $K^{P}_{\delta(i,j)}$ is the $\delta(i, j)$ -th row of K^{P}

 $lpha_{(Lt,Compare)}$

• $\alpha_{i,i} = \bigotimes$ if $\delta(i,j) = \bigotimes$ (no need to compute)

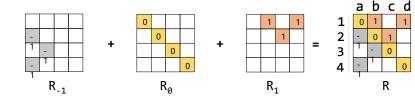


5. Model Implementation



5. Model Implementation

Theorem: the number of node pairs with the same distance length in relationship matrix will not exceed the size of the tree.



1) Decompose the matrix: group node pairs with the same distance(value).

V

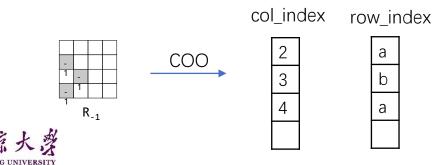
-1

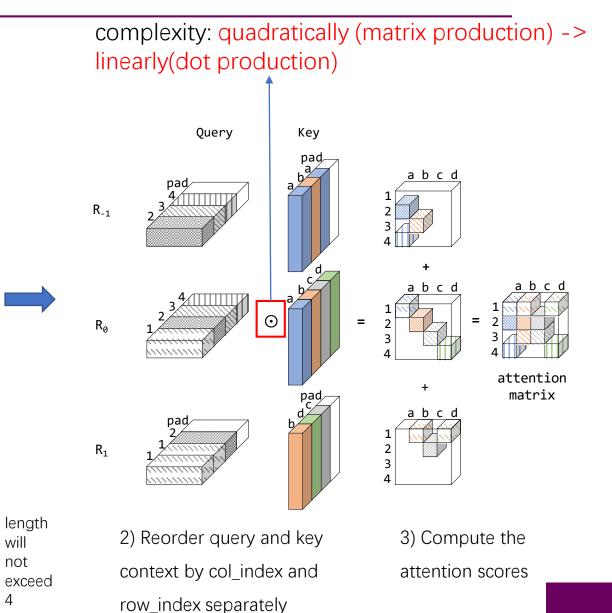
-1

will

not

4





6. Results —— Compared with baselines

Methods	Input	Java			Python		
		BLEU (%)	METEOR (%)	ROUGE-L (%)	BLEU (%)	METEOR (%)	ROUGE-L (%)
CODE-NN[20]	Code	27.6	12.61	41.10	17.36	09.29	37.81
API+CODE[19]		41.31	23.73	52.25	15.36	08.57	33.65
Dual Model[53]		42.39	25.77	53.61	21.80	11.14	39.45
BaseTrans*[1]		44.58	29.12	53.63	25.77	16.33	38.95
Code-Transformer*[57]		45.74	29.65	54.96	30.93	18.42	43.67
Tree2Seq[11]	AST(Tree)	37.88	22.55	51.50	20.07	08.96	35.64
RL+Hybrid2Seq[51]		38.22	22.75	51.91	19.28	09.75	39.34
GCN*[22]		43.94	28.92	55.45	32.31	19.54	39.67
GAT*[50]		44.63	29.19	55.84	32.16	19.30	39.12
Graph-Transformer*[40]		44.68	29.29	54.98	32.55	19.58	39.66
Code2Seq*[4]	AST(PD)	24.42	15.35	33.95	17.54	08.49	20.93
Code2Seq(Transformer)*		35.08	21.69	42.77	29.79	16.73	40.59
DeepCom[18]	AST(SBT)	39.75	23.06	52.67	20.78	09.98	37.35
Transformer(SBT)*		43.37	28.36	52.37	31.33	19.02	44.09
AST-Trans(SBT)*		44.15	29.58	54.73	32.86	19.89	45.92
Transformer(POT)*	AST(POT)	39.62	26.30	50.63	31.86	19.63	44.73
AST-Trans		48.29	30.94	55.85	34.72	20.71	47.77

6. Results —— Complexity

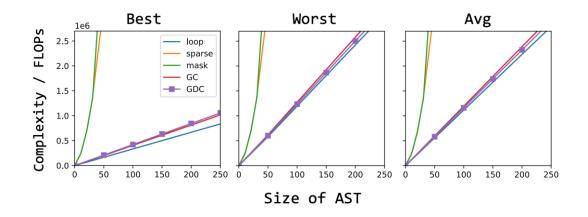


Figure 5: Theoretical complexity with P = 5, m = 32. loop has the lowest complexity but cannot be parallelized in practice.

Theoretical complexity

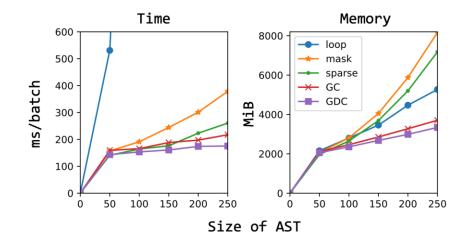


Figure 7: Runtime and memory cost of five implementations with batch size=16. The cost of the mask implementation is equal to the standard Transformer, which grows quadratically with the AST size.

Runtime and memeory cost in GPU

Reference

- 1. Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2016. Summarizing Source Code using a Neural Attention Model. ACL 2016
- 2. Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2020. A Transformer-based Approach for Source Code Summarization. ACL 2020
- 3. Akiko Eriguchi, Kazuma Hashimoto, and Yoshimasa Tsuruoka. 2016. Tree-to- Sequence Attentional Neural Machine Translation. ACL 2016
- 4. Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018. Deep code comment generation. In Proceedings of the 26th Conference on Program Comprehension, ICPC 2018
- 5. Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. 2019. code2seq: Generating Sequences from Structured Representations of Code. ICLR 2019
- 6. Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. 2021. Deberta: decoding-Enhanced Bert with Disentangled Attention. In 9th International Con- ference on Learning Representations, ICLR 2021

THANKS